LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

THIRD SEMESTER - NOVEMBER 2018
MT 3206 - APPLIED MATHEMATICS

Date: 26-10-2018
Dept. No. \square Max. : 100 Marks
Time: 01:00-04:00

SECTION A

Answer ALL questions:
($10 \times 2=20$)
1.If the Revenue function $R^{\prime}(x)=12-8 x+x^{2}$. Determine the total revenue and demand function.
2. Integrate $x^{\frac{3}{2}}+x^{\frac{1}{4}}$ with respect to x.
3. Find the maximum value of the directional derivative of $\varphi=2 x^{2}+3 y^{2}+5 z^{2}$ at the point $(1,1-4)$.
4. If $\vec{F}=t^{3} \vec{i}+t^{2} \vec{j}+(3 t+1) \vec{k}$. Find $\frac{d^{2} \vec{F}}{d t^{2}}$.
5. Show that $\vec{F}=z \vec{i}+x \vec{j}+y \vec{k}$ is solenoidal.
6. Identify the degree of the differential equation $y=\sqrt{x} \frac{d y}{d x}+\frac{k}{\frac{d y}{d x}}$.
7.State Shifting property in Laplace Transforms.
8. Prove that $L\{1\}=\frac{1}{s}$ if $s>0$.
9.Define Linear Programming problem.
10. Define Sperman's rank correlation coefficient.

SECTION B

Answer any FIVE questions:
11. If supply function is $y=2 x^{2}+4$, given $x_{0}=2, p_{0}=12$. Find the producer surplus.
12. A particle moves along a curve whose position vector at any time t is given by $\vec{r}=t^{3} \vec{i}+\left(t^{2}-1\right) \vec{j}+4 t \vec{k}$. Find the velocity and acceleration at time $t=1$.
13. Prove that div $r^{n} \vec{r}=(n+3) r^{n}$.
14. Find the center of gravity of a semi-circular lamina defined by $x^{2}+y^{2} \leq 4 ; x \geq 0$.
15. A $12 v$ battery is connected to a simple series circuit in which the inductance is $\frac{H}{2}$ and resistance is 10Ω. Determine the current i of $i(0)=0$.
16. Evaluate $\int_{0}^{\infty} e^{-2 t} \sin 3 t d t$.
17. Find $L^{-1}\left[\frac{1}{(s+1)(s+3)}\right]$.
18. From the following data calculate the coefficient of correlation.

X	1	2	3	4	5
Y	10	20	30	40	50

SECTION C

Answer any TWO questions:
$(2 \times 20=40)$
19. (a) The quantity sold and the corresponding price, under monopoly is determined by the demand function $y=16-x^{2}$ and the marginal cost function $y^{\prime}=6+x$ in such a way as to maximize the profit. Determine the corresponding consumer surplus.
(b) Evaluate $\int_{0}^{3} \int_{1}^{2} x y(x+y) d y d x$ and $\int_{1}^{2} \int_{0}^{3} x y(x+y) d x d y$ and show that they are equal.
20. (a) If $f(x)=x\left(x^{2}-4\right)^{2}, 1 \leq x \leq 3$. Prove that $\int_{a}^{b} f(x) d x=-\int_{b}^{a} f(x) d x$
(b) Evaluate $\nabla(\log r)$ where $r=|\vec{r}|, \vec{r}=x \vec{\imath}+y \vec{\jmath}+z \vec{k}$.
21. (a) Solve $\frac{d^{2} y}{d t^{2}}+4 \frac{d y}{d t}-5 y=5$ given that $y(0)=2, y^{\prime}(0)=2$ when $t=0$.
(b) A fossilized bone is found to contain $\frac{1}{1000}$ to the original amount of ${ }^{14} \mathrm{C}$ (Carbon -14). Determine the age of the fossil.
22. Calculate the standard deviation, coefficient of variation and variance for the following data:

No. of students	5	15	25	35	45	55
Marks	10	20	30	50	40	30

