LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034	
B.SC., B.C.A. DEGREE EXAMINATION – COMP.SCI., & COMP. APP., PHY., STAT., AND CHI THIRD SEMESTER – NOVEMBER 2018	EM.
MT 3206 - APPLIED MATHEMATICS	
Date: 26-10-2018 Dept. No. Max. : 100 Marks Time: 01:00-04:00	3
SECTION A	
Answer ALL questions: (10 x 2 = 20)	
1.If the Revenue function $R'(x) = 12 - 8x + x^2$. Determine the total revenue and demand function.	
2.Integrate $x^{\frac{3}{2}} + x^{\frac{1}{4}}$ with respect to x .	
3. Find the maximum value of the directional derivative of $\varphi = 2x^2 + 3y^2 + 5z^2$ at the point $(1, 1 - 4)$.	
4. If $\vec{F} = t^3 \vec{i} + t^2 \vec{j} + (3t+1)\vec{k}$. Find $\frac{d^2 \vec{F}}{dt^2}$.	
5.Show that $\vec{F} = z\vec{i} + x\vec{j} + y\vec{k}$ is solenoidal.	
6.Identify the degree of the differential equation $y = \sqrt{x} \frac{dy}{dx} + \frac{k}{\frac{dy}{dx}}$.	
dx 7.State Shifting property in Laplace Transforms.	
8.Prove that $L\{1\} = \frac{1}{s}$ if $s > 0$.	
9.Define Linear Programming problem.	
10. Define Sperman's rank correlation coefficient.	
SECTION B $(5 \times 8 - 40)$	
Answer any FIVE questions. (5 x 6 – 40) 11. If supply function is $v = 2x^2 + 4$, given $x_0 = 2$, $p_0 = 12$. Find the producer surplus.	
12. A particle moves along a curve whose position vector at any time t is given by $\vec{r} = t^3 \vec{i} + (t^2 - 1)\vec{j} + 4t\vec{k}$. Find the velocity and acceleration at time $t = 1$.	
13. Prove that $div r^n \vec{r} = (n+3)r^n$.	
14. Find the center of gravity of a semi-circular lamina defined by $x^2 + y^2 \le 4$; $x \ge 0$.	
15. A $12v$ battery is connected to a simple series circuit in which the inductance is $\frac{n}{2}$ and resistance is 10Ω .	
Determine the current i of $i(0) = 0$.	
16. Evaluate $\int_0^\infty e^{-2t} \sin 3t dt$.	
17. Find $L^{-1}\left[\frac{1}{(s+1)(s+3)}\right]$.	
18. From the following data calculate the coefficient of correlation.	
X 1 2 3 4 5	
Y 10 20 30 40 50	
SECTION C	

Answer any **TWO** questions:

 $(2 \times 20 = 40)$

19. (a) The quantity sold and the corresponding price, under monopoly is determined by the demand function $y = 16 - x^2$ and the marginal cost function y' = 6 + x in such a way as to maximize the profit. Determine the corresponding consumer surplus.

(b) Evaluate $\int_0^3 \int_1^2 xy(x+y) \, dy dx$ and $\int_1^2 \int_0^3 xy(x+y) \, dx \, dy$ and show that they are equal. (8+12)

20. (a) If $f(x) = x(x^2 - 4)^2$, $1 \le x \le 3$. Prove that $\int_a^b f(x)dx = -\int_b^a f(x)dx$ (b) Evaluate $\nabla(\log r)$ where $r = |\vec{r}|, \vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$. (12+8) 21. (c) Solve $\frac{d^2y}{dt} + 4\frac{dy}{dt}$ for r = 5 given that y(0) = 2xi'(0) = 2 when t = 0

21. (a) Solve $\frac{d^2y}{dt^2} + 4\frac{dy}{dt} - 5y = 5$ given that y(0) = 2, y'(0) = 2 when t = 0.

(b) A fossilized bone is found to contain $\frac{1}{1000}$ to the original amount of ${}^{14}C$ (Carbon – 14). Determine the age of the fossil. (12+8)

22. Calculate the standard deviation, coefficient of variation and variance for the following data:

No. of students	5	15	25	35	45	55	
Marks	10	20	30	50	40	30	

(20)
